منابع مشابه
Tensor Products of Holomorphic Representations and Bilinear Differential Operators
Let be weighted Bergman space on a bounded symmetric domain . It has analytic continuation in the weight and for in the so-called Wallach set still forms unitary irreducible (projective) representations of . We give the irreducible decomposition of the tensor product of the representation for any two unitary weights and we find the highest weight vectors of the irreducible components. We find a...
متن کاملFuzzy projective modules and tensor products in fuzzy module categories
Let $R$ be a commutative ring. We write $mbox{Hom}(mu_A, nu_B)$ for the set of all fuzzy $R$-morphisms from $mu_A$ to $nu_B$, where $mu_A$ and $nu_B$ are two fuzzy $R$-modules. We make$mbox{Hom}(mu_A, nu_B)$ into fuzzy $R$-module by redefining a function $alpha:mbox{Hom}(mu_A, nu_B)longrightarrow [0,1]$. We study the properties of the functor $mbox{Hom}(mu_A,-):FRmbox{-Mod}rightarrow FRmbox{-Mo...
متن کاملbivariations and tensor products
the ordinary tensor product of modules is defined using bilinear maps (bimorphisms), that are linear in eachcomponent. keeping this in mind, linton and banaschewski with nelson defined and studied the tensor product in an equational category and in a general (concrete) category k, respectively, using bimorphisms, that is, defined via the hom-functor on k. also, the so-called sesquilinear, or on...
متن کاملTensor Products
Let R be a commutative ring and M and N be R-modules. (We always work with rings having a multiplicative identity and modules are assumed to be unital: 1 ·m = m for all m ∈M .) The direct sum M ⊕N is an addition operation on modules. We introduce here a product operation M ⊗RN , called the tensor product. We will start off by describing what a tensor product of modules is supposed to look like....
متن کاملSome Tensor Products
Introduction 1 Acknowledgment 1 Notation 1 1. The tensor product with a motive of weight zero 3 1.1. The tensor product of two motives of weight zero 3 1.2. The tensor product of a torus with a motive of weight 0 3 1.3. The tensor product of an abelian scheme with a motive of weight 0 4 1.4. The tensor product of an extension of an abelian scheme by a torus with a motive of weight 0 4 2. The 1-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Rocky Mountain Journal of Mathematics
سال: 1998
ISSN: 0035-7596
DOI: 10.1216/rmjm/1181071785